Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
EMBO Mol Med ; 16(2): 267-293, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263527

RESUMO

The uterus is a unique mucosal site where immune responses are balanced to be permissive of a fetus, yet protective against infections. Regulation of natural killer (NK) cell responses in the uterus during infection is critical, yet no studies have identified uterine-specific factors that control NK cell responses in this immune-privileged site. We show that the constitutive expression of IFNε in the uterus plays a crucial role in promoting the accumulation, activation, and IFNγ production of NK cells in uterine tissue during Chlamydia infection. Uterine epithelial IFNε primes NK cell responses indirectly by increasing IL-15 production by local immune cells and directly by promoting the accumulation of a pre-pro-like NK cell progenitor population and activation of NK cells in the uterus. These findings demonstrate the unique features of this uterine-specific type I IFN and the mechanisms that underpin its major role in orchestrating innate immune cell protection against uterine infection.


Assuntos
Células Matadoras Naturais , Útero , Feminino , Humanos , Feto , Interferons
2.
Nat Commun ; 14(1): 7349, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963864

RESUMO

Toll-like receptor 7 (TLR7) is known for eliciting immunity against single-stranded RNA viruses, and is increased in both human and cigarette smoke (CS)-induced, experimental chronic obstructive pulmonary disease (COPD). Here we show that the severity of CS-induced emphysema and COPD is reduced in TLR7-deficient mice, while inhalation of imiquimod, a TLR7-agonist, induces emphysema without CS exposure. This imiquimod-induced emphysema is reduced in mice deficient in mast cell protease-6, or when wild-type mice are treated with the mast cell stabilizer, cromolyn. Furthermore, therapeutic treatment with anti-TLR7 monoclonal antibody suppresses CS-induced emphysema, experimental COPD and accumulation of pulmonary mast cells in mice. Lastly, TLR7 mRNA is increased in pre-existing datasets from patients with COPD, while TLR7+ mast cells are increased in COPD lungs and associated with severity of COPD. Our results thus support roles for TLR7 in mediating emphysema and COPD through mast cell activity, and may implicate TLR7 as a potential therapeutic target.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Animais , Camundongos , Triptases/genética , Receptor 7 Toll-Like/genética , Imiquimode , Pulmão , Enfisema Pulmonar/genética , Camundongos Endogâmicos C57BL
3.
Front Allergy ; 4: 1248432, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026128

RESUMO

Introduction: Eosinophilic esophagitis (EoE) is associated with allergen-driven inflammation of the esophagus and an upregulated Th2 cytokine signature. Recombinant interleukin (IL)-13 (rIL-13) administration to mice induces some of the hallmark features of EoE, including increased eotaxin expression and eosinophil recruitment. Inflammation in EoE has previously been shown to depend on the expression of TRAIL and MID-1, which reduced protein phosphatase 2A (PP2A) activity. The relationship between IL-13 and TRAIL signalling in esophageal eosinophilia is currently unknown. Objective: To investigate the interaction between IL-13-driven eosinophil infiltration and TRAIL or MID-1 in the esophagus. Method: We administered rIL-13 to wild type (WT), TRAIL-deficient (Tnsf10-/-) or STAT6-deficient (STAT6-/-) mice and targeted MID-1 with small interfering RNA. Results: rIL-13 administration to mice increased TRAIL and MID-1 expression in the esophagus while reducing PP2A activity. TRAIL deficient, but not STAT6 deficient mice demonstrated increased MID-1 expression and PP2A reduction upon IL-13 challenge which correlated with eosinophil infiltration into the esophagus. Silencing MID-1 expression with siRNA completely ablated IL-13 induced eosinophil infiltration of the esophagus, restored PP2A activity, and reduced eotaxin-1 expression. Conclusion: IL-13-driven eosinophil infiltration of the esophagus induced eosinophilia and eotaxin-1 expression in a STAT6-dependent and MID-1-dependent manner. This study highlights a novel mechanism employed by IL-13 to perpetuate eosinophil infiltration.

4.
Clin Transl Gastroenterol ; 14(12): e00638, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37753952

RESUMO

INTRODUCTION: An association between functional dyspepsia (FD) and wheat-containing foods has been reported in observational studies; however, an adaptive response has not been demonstrated. We examined whether antigens present in wheat could provoke a response from FD duodenal lymphocytes. METHODS: Lamina propria mononuclear cells (LPMCs) were isolated from duodenal biopsies from 50 patients with FD and 23 controls. LPMCs were exposed to gluten (0.2 mg/mL) or gliadin (0.2 mg/mL) for 24 hours. Flow cytometry was performed to phenotype lymphocytes. Quantitative PCR was used to measure the expression of gliadin-associated T-cell receptor alpha variant ( TRAV ) 26-2. RESULTS: In response to gliadin (but not gluten) stimulation, the effector Th2-like population was increased in FD LPMCs compared with that in controls and unstimulated FD LPMCs. Duodenal gene expression of TRAV26- 2 was decreased in patients with FD compared with that in controls. We identified a positive association between gene expression of this T-cell receptor variant and LPMC effector Th17-like cell populations in patients with FD, but not controls after exposure to gluten, but not gliadin. DISCUSSION: Our findings suggest that gliadin exposure provokes a duodenal effector Th2-like response in patients with FD, supporting the notion that food antigens drive responses in some patients. Furthermore, these findings suggest that altered lymphocyte responses to wheat proteins play a role in FD pathogenesis.


Assuntos
Dispepsia , Humanos , Dispepsia/etiologia , Gliadina/metabolismo , Triticum/genética , Linfócitos/metabolismo , Linfócitos/patologia , Glutens , Mucosa Intestinal/patologia , Receptores de Antígenos de Linfócitos T/metabolismo
5.
Mucosal Immunol ; 15(6): 1363-1374, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-36038770

RESUMO

Immune responses that result in asthma exacerbation are associated with allergen or viral exposure. Identification of common immune factors will be beneficial for the development of uniformed targeted therapy. We employed a House Dust Mite (HDM) mouse model of asthma and challenged allergic HDM mice with allergens (HDM, cockroach extract (CRE)) or respiratory syncytial virus (RSV). Purified lung immune cells underwent high-dimensional single-cell RNA deep sequencing (scRNA-seq) to generate an RNA transcriptome. Gene silencing with siRNA was employed to confirm the efficacy of scRNA-seq analysis. scRNA-seq UMAP analysis portrayed an array of cell markers within individual immune clusters. SCENIC R analysis showed an increase in regulon number and activity in CD11b- DC cells. Analysis of conserved regulon factors further identified Creb5 as a shared regulon between the exacerbation groups. Creb5 siRNAs attenuated HDM, CRE or RSV-induced asthma exacerbation. scRNA-seq multidimensional analysis of immune clusters identified gene pathways that were conserved between the exacerbation groups. We propose that these analyses provide a strong framework that could be used to identify specific therapeutic targets in multifaceted pathologies.


Assuntos
Asma , Proteína A de Ligação a Elemento de Resposta do AMP Cíclico , Transcriptoma , Animais , Camundongos , Alérgenos , Asma/genética , Pyroglyphidae , Vírus Sinciciais Respiratórios , RNA , Análise de Célula Única , Antígeno CD11b
6.
J Allergy Clin Immunol ; 150(4): 817-829.e6, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35643377

RESUMO

BACKGROUND: Asthma and chronic obstructive pulmonary disease (COPD) are common chronic respiratory diseases, and some patients have overlapping disease features, termed asthma-COPD overlap (ACO). Patients characterized with ACO have increased disease severity; however, the mechanisms driving this have not been widely studied. OBJECTIVES: This study sought to characterize the phenotypic and transcriptomic features of experimental ACO in mice induced by chronic house dust mite antigen and cigarette smoke exposure. METHODS: Female BALB/c mice were chronically exposed to house dust mite antigen for 11 weeks to induce experimental asthma, cigarette smoke for 8 weeks to induce experimental COPD, or both concurrently to induce experimental ACO. Lung inflammation, structural changes, and lung function were assessed. RNA-sequencing was performed on separated airway and parenchyma lung tissues to assess transcriptional changes. Validation of a novel upstream driver SPI1 in experimental ACO was assessed using the pharmacological SPI1 inhibitor, DB2313. RESULTS: Experimental ACO recapitulated features of both asthma and COPD, with mixed pulmonary eosinophilic/neutrophilic inflammation, small airway collagen deposition, and increased airway hyperresponsiveness. Transcriptomic analysis identified common and distinct dysregulated gene clusters in airway and parenchyma samples in experimental asthma, COPD, and ACO. Upstream driver analysis revealed increased expression of the transcription factor Spi1. Pharmacological inhibition of SPI1 using DB2313, reduced airway remodeling and airway hyperresponsiveness in experimental ACO. CONCLUSIONS: A new experimental model of ACO featuring chronic dual exposures to house dust mite and cigarette smoke mimics key disease features observed in patients with ACO and revealed novel disease mechanisms, including upregulation of SPI1, that are amenable to therapy.


Assuntos
Asma , Eosinofilia , Doença Pulmonar Obstrutiva Crônica , Hipersensibilidade Respiratória , Animais , Feminino , Camundongos , RNA , Fatores de Transcrição , Transcriptoma
7.
J Clin Invest ; 132(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642632

RESUMO

Although aging and lung injury are linked to the development of idiopathic pulmonary fibrosis (IPF), the underlying pathognomonic processes predisposing to fibrotic lesions remain largely unknown. A deficiency in the ability of type 2 alveolar epithelial cell (AEC2) progenitors to regenerate and repair the epithelia has been proposed as a critical factor. In this issue of the JCI, Liang et al. identify a deficiency in the zinc transporter SLC39A8 (ZIP8) in AEC2s and in the subsequent activation of the sirtuin SIRT1 that predisposes to decreased AEC2 renewal capacity and enhanced lung fibrosis in both IPF and aging lungs. Interestingly, the authors demonstrate the efficacy of modulating dietary zinc levels, suggesting the need for clinical trials to evaluate the therapeutic potential of dietary supplementation and the development of pharmacological modulation of the Zn/ZIP8/SIRT1 axis for treatment.


Assuntos
Proteínas de Transporte de Cátions , Fibrose Pulmonar Idiopática , Sirtuína 1 , Células Epiteliais Alveolares/metabolismo , Proteínas de Transporte , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Sirtuína 1/genética , Sirtuína 1/metabolismo
8.
Front Immunol ; 13: 805558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280986

RESUMO

Virus-induced asthma exacerbation is a health burden worldwide and lacks effective treatment. To better understand the disease pathogenesis and find novel therapeutic targets, we established a mouse model of steroid (dexamethasone (DEX)) resistant asthma exacerbation using ovalbumin (OVA) and influenza virus (FLU) infection. Using liquid chromatography-tandem mass spectrometry (LC-MC/MS), we performed a shotgun proteomics assay coupled with label-free quantification to define all dysregulated proteins in the lung proteome of asthmatic mice. Compared to control, 71, 89, and 30 proteins were found significantly upregulated by at least two-fold (p-value ≤ 0.05) in OVA-, OVA/FLU-, and OVA/FLU/DEX-treated mice, respectively. We then applied a Z-score transformed hierarchical clustering analysis and Ingenuity Pathway Analysis (IPA) to highlight the key inflammation pathways underlying the disease. Within all these upregulated proteins, 64 proteins were uniquely highly expressed in OVA/FLU mice compared to OVA mice; and 11 proteins were DEX-refractory. IPA assay revealed two of the most enriched pathways associated with these over-expressed protein clusters were those associated with MHC class I (MHC-I) antigen-presentation and interferon (IFN) signaling. Within these pathways, signal-transducer-and-activator-of-transcription-1 (STAT1) protein was identified as the most significantly changed protein contributing to the pathogenesis of exacerbation and the underlying steroid resistance based on the label-free quantification; and this was further confirmed by both Parallel Reaction Monitoring (PRM) proteomics assay and western blots. Further, the pharmacological drug Fludarabine decreased STAT1 expression, restored the responsiveness of OVA/FLU mice to DEX and markedly suppressed disease severity. Taken together, this study describes the proteomic profile underpinning molecular mechanisms of FLU-induced asthma exacerbation and identifies STAT1 as a potential therapeutic target, more importantly, we provided a novel therapeutic strategy that may be clinically translated into practice.


Assuntos
Asma , Proteômica , Animais , Asma/metabolismo , Citocinas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/efeitos adversos , Esteroides/uso terapêutico , Vidarabina/análogos & derivados
9.
PLoS Pathog ; 18(2): e1010185, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35143591

RESUMO

Arthritogenic alphaviruses are mosquito-borne viruses that are a major cause of infectious arthropathies worldwide, and recent outbreaks of chikungunya virus and Ross River virus (RRV) infections highlight the need for robust intervention strategies. Alphaviral arthritis can persist for months after the initial acute disease, and is mediated by cellular immune responses. A common strategy to limit inflammation and pathology is to dampen the overwhelming inflammatory responses by modulating proinflammatory cytokine pathways. Here, we investigate the contribution of interleukin-17 (IL-17), a cytokine involved in arthropathies such as rheumatoid arthritis, in the development RRV-induced arthritis and myositis. IL-17 was quantified in serum from RRV-infected patients, and mice were infected with RRV and joints and muscle tissues collected to analyse cellular infiltrates, tissue mRNA, cytokine expression, and joint and muscle histopathology. IL-17 expression was increased in musculoskeletal tissues and serum of RRV-infected mice and humans, respectively. IL-17-producing T cells and neutrophils contributed to the cellular infiltrate in the joint and muscle tissue during acute RRV disease in mice. Blockade of IL-17A/F using a monoclonal antibody (mAb) reduced disease severity in RRV-infected mice and led to decreased proinflammatory proteins, cellular infiltration in synovial tissues and cartilage damage, without affecting viral titers in inflamed tissues. IL-17A/F blockade triggered a shift in transcriptional profile of both leukocyte infiltrates and musculoskeletal stromal cells by downregulating proinflammatory genes. This study highlights a previously uncharacterized role for an effector cytokine in alphaviral pathology and points towards potential therapeutic benefit in targeting IL-17 to treat patients presenting with RRV-induced arthropathy.


Assuntos
Artrite Reumatoide/imunologia , Imunidade Celular , Inflamação/imunologia , Interleucina-17/imunologia , Miosite/imunologia , Vírus do Rio Ross/imunologia , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/virologia , Animais , Artrite Reumatoide/virologia , Chlorocebus aethiops , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miosite/virologia , Células Vero , Carga Viral
10.
Front Immunol ; 13: 1051632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685573

RESUMO

Background: Functional dyspepsia is characterised by chronic symptoms of post-prandial distress or epigastric pain not associated with defined structural pathology. Increased peripheral gut-homing T cells have been previously identified in patients. To date, it is unknown if these T cells were antigen-experienced, or if a specific phenotype was associated with FD. Objective: This study aimed to characterise T cell populations in the blood and duodenal mucosa of FD patients that may be implicated in disease pathophysiology. Methods: We identified duodenal T cell populations from 23 controls and 49 Rome III FD patients by flow cytometry using a surface marker antibody panel. We also analysed T cell populations in peripheral blood from 37 controls and 61 patients. Where available, we examined the number of duodenal eosinophils in patients and controls. Results: There was a shift in the duodenal T helper cell balance in FD patients compared to controls. For example, patients had increased duodenal mucosal Th2 populations in the effector (13.03 ± 16.11, 19.84 ± 15.51, p=0.038), central memory (23.75 ± 18.97, 37.52 ± 17.51, p=0.007) and effector memory (9.80±10.50 vs 20.53±14.15, p=0.001) populations. Th17 populations were also increased in the effector (31.74±24.73 vs 45.57±23.75, p=0.03) and effector memory (11.95±8.42 vs 18.44±15.63, p=0.027) subsets. Peripheral T cell populations were unchanged between FD and control. Conclusion: Our findings identify an association between lymphocyte populations and FD, specifically a Th2 and Th17 signature in the duodenal mucosa. The presence of effector and memory cells suggest that the microinflammation in FD is antigen driven.


Assuntos
Dispepsia , Humanos , Dispepsia/diagnóstico , Dispepsia/patologia , Duodeno , Dor Abdominal/metabolismo , Eosinófilos/metabolismo , Mucosa/metabolismo
12.
Sci Transl Med ; 13(621): eaav7223, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34818056

RESUMO

Chronic obstructive pulmonary disease (COPD) is the third leading cause of morbidity and death worldwide. Inhalation of cigarette smoke (CS) is the major cause in developed countries. Current therapies have limited efficacy in controlling disease or halting its progression. Aberrant expression of microRNAs (miRNAs) is associated with lung disease, including COPD. We performed miRNA microarray analyses of the lungs of mice with CS-induced experimental COPD. miR-21 was the second highest up-regulated miRNA, particularly in airway epithelium and lung macrophages. Its expression in human lung tissue correlated with reduced lung function in COPD. Prophylactic and therapeutic treatment with a specific miR-21 inhibitor (Ant-21) inhibited CS-induced lung miR-21 expression in mice; suppressed airway macrophages, neutrophils, and lymphocytes; and improved lung function, as evidenced by decreased lung hysteresis, transpulmonary resistance, and tissue damping in mouse models of COPD. In silico analyses identified a potential miR-21/special AT-rich sequence­binding protein 1 (SATB1)/S100 calcium binding protein A9 (S100A9)/nuclear factor κB (NF-κB) axis, which was further investigated. CS exposure reduced lung SATB1 in a mouse model of COPD, whereas Ant-21 treatment restored SATB1 and reduced S100A9 expression and NF-κB activity. The beneficial effects of Ant-21 in mice were reversed by treatment with SATB1-targeting small interfering RNA. We have identified a pathogenic role for a miR-21/SATB1/S100A9/NF-κB axis in COPD and defined miR-21 as a therapeutic target for this disease.


Assuntos
Calgranulina B , Proteínas de Ligação à Região de Interação com a Matriz , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Animais , Calgranulina B/genética , Calgranulina B/metabolismo , Pulmão/patologia , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo
13.
N Engl J Med ; 385(18): 1714-1717, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34706176

Assuntos
Asma , Humanos
15.
Respirology ; 26(11): 1049-1059, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34472161

RESUMO

BACKGROUND AND OBJECTIVE: Influenza virus (FLU), rhinovirus (RV) and respiratory syncytial virus (RSV) are the most common acute respiratory infections worldwide. Infection can cause severe health outcomes, while therapeutic options are limited, primarily relieving symptoms without attenuating the development of lesions or impaired lung function. We therefore examined the inflammatory response to these infections with the intent to identify common components that are critical drivers of immunopathogenesis and thus represent potential therapeutic targets. METHODS: BALB/c mice were infected with FLU, RV or RSV, and lung function, airway inflammation and immunohistopathology were measured over a 10-day period. Anti-IL-17A mAb was administered to determine the impact of attenuating this cytokine's function on the development and severity of disease. RESULTS: All three viruses induced severe airway constriction and inflammation at 2 days post-infection (dpi). However, only FLU induced prolonged inflammation till 10 dpi. Increased IL-17A expression was correlated with the alterations in lung function and its persistence. Neutralization of IL-17A did not affect the viral replication but led to the resolution of airway hyperresponsiveness. Furthermore, anti-IL-17A treatment resulted in reduced infiltration of neutrophils (in RV- and FLU-infected mice at 2 dpi) and lymphocytes (in RSV-infected mice at 2 dpi and FLU-infected mice at 10 dpi), and attenuated the severity of immunopathology. CONCLUSION: IL-17A is a common pathogenic molecule regulating disease induced by three prevalent respiratory viruses. Targeting the IL-17A pathway may provide a unified approach to the treatment of these respiratory infections alleviating both inflammation-induced lesions and difficulties in breathing.


Assuntos
Interleucina-17/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Picornaviridae/imunologia , Infecções por Vírus Respiratório Sincicial , Animais , Pulmão/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Orthomyxoviridae , Vírus Sinciciais Respiratórios/imunologia , Rhinovirus
16.
Antioxidants (Basel) ; 10(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202305

RESUMO

Relatively little is known about the transgenerational effects of chronic maternal exposure to low-level traffic-related air pollution (TRAP) on the offspring lung health, nor are the effects of removing such exposure before pregnancy. Female BALB/c mice were exposed to PM2.5 (PM2.5, 5 µg/day) for 6 weeks before mating and during gestation and lactation; in a subgroup, PM was removed when mating started to model mothers moving to cleaner areas during pregnancy to protect their unborn child (Pre-exposure). Lung pathology was characterised in both dams and offspring. A subcohort of female offspring was also exposed to ovalbumin to model allergic airways disease. PM2.5 and Pre-exposure dams exhibited airways hyper-responsiveness (AHR) with mucus hypersecretion, increased mitochondrial reactive oxygen species (ROS) and mitochondrial dysfunction in the lungs. Female offspring from PM2.5 and Pre-exposure dams displayed AHR with increased lung inflammation and mitochondrial ROS production, while males only displayed increased lung inflammation. After the ovalbumin challenge, AHR was increased in female offspring from PM2.5 dams compared with those from control dams. Using an in vitro model, the mitochondria-targeted antioxidant MitoQ reversed mitochondrial dysfunction by PM stimulation, suggesting that the lung pathology in offspring is driven by dysfunctional mitochondria. In conclusion, chronic exposure to low doses of PM2.5 exerted transgenerational impairment on lung health.

17.
Cell Mol Gastroenterol Hepatol ; 12(4): 1479-1502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34242819

RESUMO

BACKGROUND & AIMS: CD4+ T cells are regulated by activating and inhibitory cues, and dysregulation of these proper regulatory inputs predisposes these cells to aberrant inflammation and exacerbation of disease. We investigated the role of the inhibitory receptor paired immunoglobulin-like receptor B (PIR-B) in the regulation of the CD4+ T-cell inflammatory response and exacerbation of the colitic phenotype. METHODS: We used Il10-/- spontaneous and CD4+CD45RBhi T-cell transfer models of colitis with PIR-B-deficient (Pirb-/-) mice. Flow cytometry, Western blot, and RNA sequencing analysis was performed on wild-type and Pirb-/- CD4+ T cells. In silico analyses were performed on RNA sequencing data set of ileal biopsy samples from pediatric CD and non-inflammatory bowel disease patients and sorted human memory CD4+ T cells. RESULTS: We identified PIR-B expression on memory CD4+ interleukin (IL)17a+ cells. We show that PIR-B regulates CD4+ T-helper 17 cell (Th17)-dependent chronic intestinal inflammatory responses and the development of colitis. Mechanistically, we show that the PIR-B- Src-homology region 2 domain-containing phosphatase-1/2 axis tempers mammalian target of rapamycin complex 1 signaling and mammalian target of rapamycin complex 1-dependent caspase-3/7 apoptosis, resulting in CD4+ IL17a+ cell survival. In silico analyses showed enrichment of transcriptional signatures for Th17 cells (RORC, RORA, and IL17A) and tissue resident memory (HOBIT, IL7R, and BLIMP1) networks in PIR-B+ murine CD4+ T cells and human CD4+ T cells that express the human homologue leukocyte immunoglobulin-like receptor subfamily B member 3 (LILRB3). High levels of LILRB3 expression were associated strongly with mucosal injury and a proinflammatory Th17 signature, and this signature was restricted to a treatment-naïve, severe pediatric CD population. CONCLUSIONS: Our findings show an intrinsic role for PIR-B/LILRB3 in the regulation of CD4+ IL17a+ T-cell pathogenic memory responses.


Assuntos
Regulação da Expressão Gênica , Imunomodulação , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Receptores Imunológicos/genética , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Biomarcadores , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Colite/etiologia , Colite/metabolismo , Colite/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Imuno-Histoquímica , Memória Imunológica , Imunofenotipagem , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Receptores Imunológicos/metabolismo , Transdução de Sinais
18.
Mucosal Immunol ; 14(5): 1077-1087, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34083747

RESUMO

CD4+ T-helper 22 (Th22) cells are a phenotypically distinct lymphocyte subset that produces high levels of interleukin (IL)-22 without co-production of IL-17A. However, the developmental origin and lineage classification of Th22 cells, their interrelationship to Th17 cells, and potential for plasticity at sites of infection and inflammation remain largely undefined. An improved understanding of the mechanisms underpinning the outgrowth of Th22 cells will provide insights into their regulation during homeostasis, infection, and disease. To address this knowledge gap we generated 'IL-17A-fate-mapping IL-17A/IL-22 reporter transgenic mice' and show that Th22 cells develop in the gastrointestinal tract and lung during bacterial infection without transitioning via an Il17a-expressing intermediate, although in some compartments alternative transition pathways exist. Th22-cell development was not dependent on T-bet; however, this transcription factor functioned as a promiscuous T-cell-intrinsic regulator of IL-17A and IL-22 production, in addition to regulating the outgrowth, phenotypic stability, and plasticity of Th22 cells. Thus, we demonstrate that at sites of mucosal bacterial infection Th22 cells develop as a distinct lineage independently of Th17 cells; though both lineages exhibit bidirectional phenotypic flexibility within infected tissues and their draining lymph nodes, and that T-bet plays a critical regulatory role in Th22-cell function and identity.


Assuntos
Infecções Bacterianas/etiologia , Infecções Bacterianas/metabolismo , Diferenciação Celular/imunologia , Interleucinas/biossíntese , Proteínas com Domínio T/metabolismo , Subpopulações de Linfócitos T/fisiologia , Células Th17/citologia , Células Th17/metabolismo , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Imunofenotipagem , Interleucina-17/genética , Interleucina-17/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Subpopulações de Linfócitos T/citologia
19.
Nat Immunol ; 22(7): 851-864, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099918

RESUMO

Group 2 innate lymphoid cells (ILC2s) are essential to maintain tissue homeostasis. In cancer, ILC2s can harbor both pro-tumorigenic and anti-tumorigenic functions, but we know little about their underlying mechanisms or whether they could be clinically relevant or targeted to improve patient outcomes. Here, we found that high ILC2 infiltration in human melanoma was associated with a good clinical prognosis. ILC2s are critical producers of the cytokine granulocyte-macrophage colony-stimulating factor, which coordinates the recruitment and activation of eosinophils to enhance antitumor responses. Tumor-infiltrating ILC2s expressed programmed cell death protein-1, which limited their intratumoral accumulation, proliferation and antitumor effector functions. This inhibition could be overcome in vivo by combining interleukin-33-driven ILC2 activation with programmed cell death protein-1 blockade to significantly increase antitumor responses. Together, our results identified ILC2s as a critical immune cell type involved in melanoma immunity and revealed a potential synergistic approach to harness ILC2 function for antitumor immunotherapies.


Assuntos
Anticorpos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Interleucina-33/farmacologia , Linfócitos/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Quimiotaxia de Leucócito/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Eosinófilos/metabolismo , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo
20.
J Clin Invest ; 131(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33792564

RESUMO

Allergic asthma is a chronic inflammatory airway disease characterized by dysregulated type 2 immune responses, including degranulating airway eosinophils that induce tissue damage and airway hyperresponsiveness (AHR). The type 2 cytokines interleukin 5 (IL-5) and IL-13 and the eosinophil-specific chemokine CCL11/CCL24/CCL26 axis recruit, activate, and regulate eosinophils in the airways. In this issue of the JCI, Karcz et al. identified a mechanism involving the nucleotide sugar UDP-glucose (UDP-G) and the purinergic receptor P2Y14R in amplifying eosinophil accumulation in the lung. During type 2 inflammation, UDP-G activates P2Y14R on eosinophils, inducing the cells to move and migrate into the lung. Pharmacologically or genetically inhibiting P2Y14R on eosinophils attenuated eosinophil infiltration and AHR. Future experiments, including identifying additional type 2 factors regulating P2Y14R expression on lung eosinophils, are necessary to ascertain the impact of targeting P2Y14R as an alternative or adjunctive therapy to current type 2 biologics for the treatment of asthma.


Assuntos
Asma , Eosinófilos , Asma/tratamento farmacológico , Asma/genética , Glucose , Humanos , Interleucina-13 , Uridina Difosfato Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...